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Strong pattern selection and amplitude equation of higher order for ionization waves
in a neon glow discharge

B. Bruhn and B.-P. Koch
Institut für Physik, Domstrasse 10a, 17487 Greifswald, Germany

~Received 29 June 1999!

Motivated by recent experiments and numerical simulations of the positive column of a neon glow discharge
we investigate the Eckhaus instability of traveling waves. Compared to the classical results the plasma system
shows some peculiarities, e.g., an asymmetric stability region and strong selection of periodic patterns. These
complex phenomena may be explained by a transition from supercritical to subcritical Hopf bifurcation near
the critical point. In the weak nonlinear region the wave dynamics is approximated by a quintic Ginzburg-
Landau equation supplemented by nonlinear gradient terms. Starting from a hydrodynamic model the coeffi-
cients of this equation, which depend on the plasma parameters, are calculated. The stability properties of plane
wave solutions are discussed for an infinitely long discharge as well as for finite ones. The theoretical results
show most of the properties that are observed in real experiments.

PACS number~s!: 52.35.Py, 52.80.Hc, 05.45.2a
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I. INTRODUCTION

The study of nonlinear nonequilibrium phenomena in s
tially extended systems is one of the very active areas
physics and other sciences. Pattern forming instabilities
pattern selecting processes attract the attention of both
perimental and theoretical investigations@1#. An example for
a physical system, which shows a very complex dynam
behavior, is the plasma of the positive column of inert g
discharges. One observes homogeneous states, periodi
terns, traveling waves, and different types of turbulent
namics depending on pressurep0, discharge currentI 0, and
geometry@2–4#. The topic considered here is the ionizatio
instability in low-pressure neon discharges that arises ab
a critical value of the current. Mostly the theoretical descr
tion of ionization waves is investigated on the basis o
hydrodynamic model@5–7# in one spatial dimension. Star
ing from the homogeneous state of the positive column H
bifurcations are the generic wave forming processes a
moreover, different types of Hopf-Hopf bifurcations can
shown to exist@8#. Since such types of transitions occur
many different physical systems, it is desirable to find u
versal methods that allow one to extract some generic p
erties of the considered system.

The description of the wave dynamics near the instabi
border by means of amplitude equations is such a unive
approach. For ionization waves close to the Pupp crit
current, Bekki@9# has derived an amplitude equation that h
the form of a nonlinear Schro¨dinger equation. Like this equa
tion, also the Ginzburg-Landau equation is one of a few u
versal models describing the evolution of patterns in
weakly nonlinear region. There is enormous literature cov
ing the field of the exact and approximate analytical so
tions of the different Ginzburg-Landau models~cf. @10# and
references therein!. Moreover, the classification of the solu
tion manifold by means of numerical methods is a well
tablished instrument. For example, the borders separatin
gions of different behavior of the complex Ginzburg-Land
equation~CGLE! can be found in@11#. It is one important
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-
in
d
x-

al
s
pat-
-

ve
-
a

f
d,

-
p-

y
al
l

i-
e
r-
-

-
re-

goal of the theoretical investigations of pattern formation
find the link between the basic evolution equations and
coefficients of the amplitude equation in question. These
efficients contain all relevant information of the underlyin
model in the weak nonlinear region.

In the field of ionization waves this is motivated by e
perimental investigations on the so-calledp waves. Already
in the experiments of Achterberg and Michel@13# some char-
acteristics of the stability diagram were investigated. In
cent experimental studies@14# the pecularities with respect t
the modern theory of nonlinear systems are emphasized.
stability diagram indicates discharge currents of stable n
linear wave states characterized by their wave number. V
ing the current stable waves can be prepared. At the crit
point the largest wave number appears. Increasing the
rent waves with smaller wave numbers occurs. Each on
characterized by its own stability range, which ends a
specific current. As a rule at a given current only one or t
wave modes are permitted, i.e., with respect to the cur
there is overlapping of stability regions leading to hystere
The theoretical explanation may be attempted in the fram
work of the CGLE. In the limit of very long systems th
stability borders that mark the so-called Eckhaus stabi
region in the plane of the wave number and the control
rameter are given by a parabola centered at the critical w
numberkc . In a bounded system only discrete wave nu
bers exist. The main concern of this paper is to explain
experimentally found asymmetric stability region th
strongly deviates from the expected behavior predicted
the CGLE.

There are additional facts making an extension of
usual Ginzburg-Landau description necessary. In a recen
per @12# we derived a modified CGLE near the border
ionization instability in a neon discharge using the multip
scale method. For different pressures the solutions of
CGLE were compared with numerical calculations of the f
set of balance equations. For example, in the low-press
region only traveling waves with one selected mode app
whereas the CGLE predicts additionally intermittency in t
corresponding parameter region~cf. @12#!. Hence a CGLE
3078 ©2000 The American Physical Society



he
on
te
b
ce
n
ra

f-

a
e
da
th
-
v

lo-

te
n
ric
pli

. I
e
w

he
te
s
et
o

he
th
re
e

y
e
u
pl
r

es
e

n

e
ver

s

riers

qui-
-
by

e
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with third-order nonlinearity is not sufficient to describe t
ionization waves at low-pressure values. The aim of this c
tribution is to show that higher-order terms of the modula
amplitude in the CGLE may explain these peculiarities o
served in numerical simulations of the full set of balan
equations and in real experiments. The amplitude equatio
question is a quintic CGLE supplemented by nonlinear g
dient terms, i.e.,

]A

]t
5mA2vg

]A

]z
1b

]2A

]z2
1cA* A21dA* 2A3

1S a2 i
]c

]k U
0
DA

]A* A

]z
2 i

]c

]kU
0

A* A
]A

]z
, ~1.1!

whereA(z,t) is the slowly varying amplitude and the coe
ficients ~except for the group velocityvg and the unfolding
parameterm) are complex numbers. It is the main technic
task of this paper to derive the dependencies of these co
cients on plasma parameters. Compared to the stan
CGLE of third order, the nonlinear gradient terms break
reflection symmetryz→2z. This symmetry breaking pro
vides an asymmetric stability region near the critical wa
number@15# and influences the dynamical properties of
calized solutions@16#. The termvg(]A/]z) breaks this sym-
metry, too, but it can be removed by transformation to
moving reference frame. To our knowledge, the investiga
plasma system is the first one, where the strong selectio
periodic patterns is observed in experiments and nume
simulations and is correctly described by a fifth-order am
tude equation.

Starting from a set of basic evolution equations in Sec
we derive~1.1! in Sec. III. Some results concerning plan
waves and their stability are discussed in Sec. IV. Finally
discuss the validity of the results obtained.

II. BASIC EQUATIONS

The hydrodynamic description of ionization waves in t
positive column plasma of a dc discharge is well accep
provided that the pressure is not to low. Starting from the
of balance equations for the density of electrons, ions, m
stable atoms, and the electron temperature and using s
physically motivated approximations@7#, one finds a system
of four nonlinear partial integrodifferential equations. T
integrals arise from the coupling of the discharge through
external circuit, i.e., the voltage applied and the external
sistanceRa @7,8#. In this paper we restrict our study to th
limit of a very large external resistance (Ra→`). Experi-
mentally this can be realized by a discharge driven b
current source~cf. @14#!. The limit Ra→` has the advantag
that the basic equations reduce to partial differential eq
tions, i.e., all integrals drop out and calculations are sim
fied. Although the external circuit is important for the unde
standing of the bifurcation behavior of ionization wav
@7,8#, its influence on the solution manifold of the amplitud
equation is rather weak, at least in the considered regio
plasma parameters@12#. In the limit Ra→` the set of basic
equations can be written as
-
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Tjk

]Xk

]t
5AjkXk1Bjk

]Xk

]z
1Cjk

]2Xk

]z2
1D jklXkXl

1QjklXk

]Xl

]z
1EjklXk

]2Xl

]z2
1F jkl

]Xk

]z

]Xl

]z

1GjklmXkXlXm1H jklmXkXl

]2Xm

]z2

1L jklmXk

]Xl

]z

]Xm

]z
, ~2.1!

where Xk5Xk(z,t) represents the four-dimensional wav
vector and a summation is to be understood as one o
repeated indexes (j ,k,l , . . .51,2,3,4) unless the contrary i
explicitly stated. The row vector components

~Xk!
T5~u,m,v,w!

are related to the radial averaged densities of charge car
N, metastable atomsM, the electron temperatureT, and the
axial electric fieldE, i.e.,

u5
N2N0

N0
, m5

M2M0

M0
, v5

T2T0

T0
, w5

E2E0

E0

denote the relative deviations from the homogeneous e
librium state (N0 ,M0 ,T0 ,E0) @7#. The space and time vari
ablesz8 andt8 are transformed into a dimensionless form

z5
E0

T0
z8, t5bi

E0
2

T0
t8,

where the electron temperature of the homogeneous statT0
is measured in units of volts.bi is the mobility of the ions.

The coefficients of the linear terms are given by

~Tjk!5S 1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

D ,

~Ajk!5S h1 h3 h2 0

h4 h6 h5 0

21 2h4 2h1 1

1 0 0 1

D ,

~Bjk!5S 0 0 0 0

0 0 0 0

0 0 k 0

a 0 b 0

D ,
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~Cjk!5S a 0 b 0

0 D 0 0

2d1 0 2d2 0

0 0 0 0

D . ~2.2!

The coefficients of the nonlinear termsD jkl , . . . ,L jklm can
be found in the Appendix. Note thath1 , . . . ,h6 ;
h1 , . . . ,h6 ; s0 , . . . ,s8; and r1 , . . . ,r10 are coefficients
that result from a series expansion of the production and
terms up to the third order~cf. @7,8#!. In contrast to the ki-
netic coefficientsa,b,d1 , . . . ,d4 andk, which are assumed
to be constant numbers, these parameters depend on th
tual equilibrium solution, e.g., on the currentI 0. The series
expansion of the production and loss terms up to the th
order is an approximation. Since collision rates are cal
lated by using empirical formulas~cf. @7#! terms of fourth
and fifth order do not improve the precision of the resu
Therefore~2.1! is our basic system and no further expans
terms of higher-order nonlinearity will be included.

In order to motivate the necessity of using Eq.~1.1!, it is
instructive to look for the bifurcation type~sub- or supercriti-
cal Hopf bifurcations! along the instability curve of thep
waves. Figure 1 shows the results of such calculations
various values of the gas pressurep0. These diagrams ar
obtained with the methods described in Ref.@8#. A transition
between sub- and supercritical behavior can be observed
the minima of the instability curves. At these transitio

FIG. 1. Instability curves ofp waves parametrized by selecte
pressure values. The homogeneous state becomes unstable
these curves. The transition to the unstable region is connected
a subcritical~black circles! or a supercritical~solid line! Hopf bi-
furcation.~Discharge radiusr 051 cm and the dimensionless wav
number k is normalized with respect to the equilibrium da
T0 /E0).
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points, the real part of the coefficient of the nonlinear term
the Hopf normal form equation goes through zero. This ty
of degeneration is a necessary condition for the introduc
of higher-order terms into a Ginzburg-Landau-type modu
tion equation@15,17#.

The structure of Eq.~2.1! is sufficiently general in order
to describe different physical systems, too. The coefficie
Ajk , . . . ,L jklm contain the particular properties of the sy
tem under consideration. Therefore, we shall derive
higher-order amplitude equation as general as possible
the link to the special plasma system will be made at the
of our considerations.

III. DERIVATION OF THE AMPLITUDE EQUATION

For clarity, a brief survey of the perturbation theoretic
method is given~cf. @12,18#!. Let « be the small expansion
parameter defined by

«25
I 02I c

I c
, ~3.1!

where the discharge currentI 0 is the control parameter andI c
its value at the critical point. Then the wave vectorXk is
expanded in a power series with respect to«

Xk5 (
a51

`

«aXk
(a)5«Xk

(1)1«2Xk
(2)1••• ~3.2!

and each of these terms is represented by a Fourier ser

Xk
(a)5 (

N52`

`

Xk
(a)N~t,j!expiN~kz2vt !. ~3.3!

The basic pair (v,k)5(vc ,kc) corresponds to the critica
mode that becomes unstable at the minimum of the insta
ity curve. The Fourier coefficientsXk

(a)N are weakly varying
functions of space and time, i.e., they depend on stretc
variables

t5«2t, j5«~z2vt !, ~3.4!

where v is a free real parameter. Since the coefficie
hk , hl , sm , rn , andD depend on the discharge currentI 0
~see@7# for their definitions!, they also depend on«. This
dependence can be approximated by a Taylor expansion
the critical point (I c ,kc), e.g.,

Ajk5Ajku01«2Ajk8 u01
1

2
«4Ajk9 u01•••. ~3.5!

Here the prime stands for the partial derivative with resp
to «2 and 0 indicates the critical point (I c ,kc). The same
expansion is used for the coefficientsCjk , D jkl , andGjklm .
The remaining coefficients do not depend on« since the
kinetic coefficientsa, b, d j , andk are constant numbers.

Substituting all these expansions up to the fifth order w
respect to the small parameter into the basic equations~2.1!
and equating the coefficients of equal power of« leads to a
hierarchy of linear inhomogeneous problems. The cor
sponding equations can be solved by means of elemen

ove
ith
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PRE 61 3081STRONG PATTERN SELECTION AND AMPLITUDE . . .
methods, however, the evaluations involve tedious alge
and therefore we report here only selected results.

A. First order of perturbation theory

Because of the propertyXk
(a)N5(Xk

(a)2N)* only the mode
numbersN>0 are relevant to our considerations. We defi
the mode-dependent linear operatorV jk by

V jk~Nv,Nk!52 iNvTjk2Ajku02 iNkBjk1N2k2Cjku0 .
~3.6!

Because the Fourier modes form an independent syste
functions, the first order in« yields an infinite system o
homogeneous equations with a solution

Xk
(1)050, Xk

(1)N50 for N>2,

Xk
(1)15F1~j,t!Yk , ~Yk!5S 1

M10

V10

W10

D . ~3.7!

The componentsYk fulfill the homogeneous equations

V jk~v,k!Yk50 ~3.8!

and their explicit solution form can be found in@12# for our
plasma system. The evaluation of the dispersion rela
det(V jk)50 yields the instability curves of the linear theo
~cf. Fig. 1 and see also@12#!. We note thatF1(j,t) is an
arbitrary amplitude function that will be fixed at order«3.
This is a typical property of the perturbation method used.
any ordera a new amplitudeFa(j,t) is introduced for the
N51 mode, which will be fixed by means of a partial di
ferential equation at ordera12.

Taking into account the usual Hermitian scalar produc

^YW uXW &5Yk* Xk

the solution of the adjoint homogeneous problem can
found as

Xk
ad5C~j,t!Yk

ad , ~3.9!

where

V jk
† Yk

ad50

and C is an arbitrary amplitude. Furthermore, we choo
C51 without any restriction. The explicit solutionYk

ad can
be found once more in@12#.

B. Second order

To this order the mode numbersN>3 provide the trivial
solution. Hence, we consider the solutions forN52,1,0 only.
A more extended version of the second-order calculatio
given in @12#,

N52: Xk
(2)25~F1!2Yk

(2)2 , ~3.10!

where
ra

e

of

n

t

e

e

is

V jk~2v,2k!Yk
(2)25p j

(2)2 ~3.11!

and the inhomogeneity can be calculated by

p j
(2)25@D jkl u02k2~Ejkl1F jkl !1 ikQjkl #YkYl .

The problem associated with the mode numberN51 can be
solved explicitly,

N51: Xj
(2)15F2Yj2 i

]F1

]j

]Yj

]k
, ~3.12!

where F25F2(j,t) is an unknown amplitude and, more
over, this order fixes the free parameterv in ~3.4! to be the
group velocity of the wave at the critical point

v5vg5
]v

]k U
0

. ~3.13!

The N50 mode yields

N50: Xk
(2)05F1* F1Yk

(2)0 ~3.14!

with

V jk~0,0!Yk
(2)05p j

(2)0 ~3.15!

and

p j
(2)05 ikQjkl~Yk* Yl2YkYl* !1@D jkl u01k2~F jkl2Ejkl !#

3~Yk* Yl1YkYl* !. ~3.16!

The solution of~3.11! and ~3.15! can be found by means o
Kramer’s rule or other standard methods.

C. Third order

Nontrivial solutions exist forN53,2,1,0 and all other
mode numbersN>0 yield homogeneous systems that ha
the trivial solution only. ForN53 one finds

N53: Xk
(3)35~F1!3Yk

(3)3 , ~3.17!

whereYk
(3)3 is independent onj,t and fulfills the inhomoge-

neous equation

V jk~3v,3k!Yk
(3)35p j

(3)3 ~3.18!

with

p j
(3)35@D jkl u022k2F jkl #~YkYl

(2)21Yk
(2)2Yl !

1 ikQjkl~2YkYl
(2)21Yk

(2)2Yl !2k2Ejkl~4YkYl
(2)2

1Yk
(2)2Yl !1@Gjklmu02k2~H jklm1L jklm!#YkYlYm .

The inhomogeneous system corresponding toN52 can di-
rectly be solved by means of the second-order solutions
one finds

N52: Xj
(3)252F1F2Yj

(2)22 iF1

]F1

]j

]Yj
(2)2

]k
.

~3.19!
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The modeN51 requires a special consideration. The cor
sponding inhomogeneous problem has nontrivial soluti
only if a Fredholm alternative condition is satisfied. Th
solvability condition leads to the CGLE~cf. also@12#!

]F1

]t
5pF11b

]2F1

]j2
1cF1* F1

2 , ~3.20!

where the complex coefficients are given by

p52 i
]v

]«2U
0

, b5
i

2

]2v

]k2U
0

, c5
Yj

ad* p j
(3)1

TlmYl
ad* Ym

~3.21!

and the componentsp j
(3)1 can be found in the Appendix. Th

explicit solution of theN51 mode can be written as

Xj
(3)15F3Yj2 i

]F2

]j

]Yj

]k
1F1

]Yj

]«2
2

1

2

]2F1

]j2

]2Yj

]k2

1F1* F1
2Yj

(3)1. ~3.22!

Here F35F3(j,t) is a new unknown amplitude andYj
(3)1

solves the equation

V jk~v,k!Yk
(3)15p j

(3)12cTjkYk . ~3.23!

Of course, this inhomogeneous problem fulfills the solvab
ity condition by taking into account the definition ofc by
~3.21!. The solutionYk

(3)1 strongly depends on the propertie
of the special matrixV jk(v,k). In the case of our plasm
system the rank ofV jk is three at least in the considere
range of plasma parameters and therefore the solution ca
found byY4

(3)150 and

S ak22h12 iv 2h3 bk22h2

2h4 Dk22h62 iv 2h5

12d1k2 h4 h12 ikk2d2k2
D

3S Y1
(3)1

Y2
(3)1

Y3
(3)1

D 5S p1
(3)12cY1

p2
(3)12cY2

p3
(3)1

D . ~3.24!

This subsystem has an invertible coefficient matrix and
be solved by means of Kramer’s rule.

The last step of the third perturbation order requires
study of theN50 mode. The solution can be written as

N50:

Xk
(3)05~F1F2* 1F2F1* !Yk

(2)01F1

]F1*

]j
Yk

(3)0

1F1*
]F1

]j
~Yk

(3)0!* , ~3.25!

where the complex vectorYk
(3)0 is a solution of

V jk~0,0!Yk
(3)05p j

(3)0 ~3.26!

with the inhomogeneity
-
s

-

be

n

e

p j
(3)05~vgTjk1Bjk!Yk

(2)01 i @D jkl u01k2~F jkl2Ejkl !#

3S Yk

]Yl*

]k
1

]Yk*

]k
Yl D 1@Qjkl12ik~F jkl

2Ejkl !#YkYl* 1kQjkl S Yk

]Yl*

]k
2

]Yk*

]k
Yl D .

~3.27!

Note thatp j
(3)0 is a complex valued inhomogeneity, where

Xk
(3)0 represents a real valued solution. Without proof w

give the following connection between the solutions of t
second and third order forN50:

2 i
]Yk

(2)0

]k
5~Yk

(3)0!* 2Yk
(3)0 ,

which can be used to check a numerical solution.

D. Fourth order

In this order it is sufficient to look at the mode numbe
N50,1,2 only because the higher-order nontrivial mod
(N53,4) do not contribute to the calculations of the nonli
ear gradient terms and the term of fifth power in~1.1!. More-
over, for N52 andN50 a particular~incomplete! solution
is discussed, which simplifies all our calculations. We fin

N52: Xk
(4)25F1* ~F1!3Yk

(4)21•••, ~3.28!

where the dots indicate further terms, e.g., terms that con
a derivative ofF1 with respect toj. But all these additional
terms do not contribute to the fifth-order-term calculation
The vectorYk

(4)2 in ~3.28! is a solution of the inhomogeneou
equation

V jk~2v,2k!Yk
(4)2522cTjkYk

(2)21p j
(4)2 , ~3.29!

where the inhomogeneity results from all terms;F1* (F1)3

andc is defined by~3.21!. The explicit form ofp j
(4)2 can be

found in the Appendix. In a similar manner one obtains
the N50 mode a particular solution

N50: Xk
(4)05~F1* F1!2Yk

(4)01••• ~3.30!

and

V jk~0,0!Yk
(4)052~c1c* !TjkYk

(2)01p j
(4)0 . ~3.31!

This inhomogeneityp j
(4)0 is given in the Appendix, too. We

note that the first term of the right-hand side of~3.31! results
from a term2Tjk(]Xk

(2)0/]t). InsertingXk
(2)0 given by Eq.

~3.14! and using~3.20! by taking into account~3.30! pro-
vides the desired structure. Of course,~3.29! and ~3.31! can
be solved by means of a standard method.

In a next step we look for the solvability condition of th
N51 mode. After elementary manipulations one finds

]F2

]t
5•••1aF1

]~F1* F1!

]j
2 i

]c

]k U
0

]~F1* F1
2!

]j
,

~3.32!
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where the constanta is defined by

a5

Yj
ad* S p j

(4)11 i
]p j

(3)1

]k
U

0
D

TlmYl
ad* Ym

~3.33!

and the components ofp j
(4)1 are listed in the Appendix. The

dots in~3.32! indicate further terms that are linear inF2, for
example, terms of the typeb(]2F2 /]j2) or c(F1

2F2*
12F1* F1F2). These additional terms correspond to t
variational equation of~3.20! with dF1→F2. Therefore the
Fredholm solvability condition yields a linear inhomog
neous partial differential equation that fixes the second
plitudeF2. The inhomogeneity is formed by terms that co
tain the first amplitudeF1 and their derivatives@cf. ~3.32!#.
Beside the nonlinear gradient terms there are two additio
linear terms of the type

•••1 f
]3F1

]j3
1e

]F1

]j

with coefficients

f 5
1

6

]3v

]k3U
0

, e52
]2v

]k]«2U
0

. ~3.34!

However, as Eckhaus and Iooss@15# have shown, these lin
ear terms can be shifted to higher-order corrections by me
of a rescaling in the degenerated case~cf. also@17#!. There-
fore the nonlinear gradient terms are the only important c
tributions for our purpose.

E. Fifth order

In this order it is sufficient to examine theN51 mode
only. The solvability condition of the corresponding inhom
geneous problem yields a linear partial differential equat
for the third amplitudeF3(j,t) that is introduced in the third
order of perturbation theory@cf. ~3.22!#,

]F3

]t
5•••1dF1*

2F1
31•••, ~3.35!

where

d5
Yj

ad* @p j
(5)12~c* 12c!TjkYk

(3)1#

TlmYl
ad* Ym

. ~3.36!

The dots in~3.35! indicate a lot of terms linear inF3. Some
of these terms depend onF1 and F2, however, we have
written the most important inhomogeneous term only. T
components ofp j

(5)1 can be found in the Appendix too. Th
calculation of the inhomogeneitiesp j

(2)2 , . . . ,p j
(5)1 is very

intricate because the number of terms very strongly increa
with the number of the perturbation order. Moreover, any
these terms~cf. p j

(5)1 in the Appendix! contain some sum
mations over the vector indexes that must be performed
the concrete physical system.
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At this stage, the reconstruction of a general amplitu
function F(j,t) is possible, which contains the contribu
tions of successive orders@19#. Let

F~j,t!5F11«F21«2F31•••

and taking into consideration the evolution Eqs.~3.20!,
~3.32!, and~3.35! one finds

]F

]t
5pF1b

]2F

]j2
1cF* F21«F S a2 i

]c

]k U
0
DF

]F* F

]j

2 i
]c

]kU
0

F* F
]F

]j
1•••G1«2~dF* 2F31••• !,

~3.37!

i.e., the usual CGLE with cubic order nonlinearity is a fir
approximation only of the wave dynamics of the full syste
near the instability border. The additional terms describe f
ther details of the dynamics, for example, theO(«) terms
break the reflection symmetryj→2j and theO(«2) term
models the influence of higher-order nonlinearities. From
mathematical point of view it is not quite clear whether su
type of perturbation theory yields convergent results. W
shall show in Sec. V that the additional terms produce so
peculiarities we have observed in real experiments.

Finally, we return to the original space and time variab
and introduce the amplitude function«F(j,t)5Ã(z,t) to
find

]Ã

]t
5«2pÃ2vg

]Ã

]z
1b

]2Ã

]z2
1cÃ* Ã21dÃ* 2Ã3

1S a2 i
]c

]k U
0
D Ã

]Ã* Ã

]z
2 i

]c

]kU
0

Ã* Ã
]Ã

]z
.

A phase rotation

Ã~z,t !5exp~ i«2pit !A~z,t !, p5pr1 ipi

removes the term;pi and we obtain

]A

]t
5«2prA2vg

]A

]z
1b

]2A

]z2
1cA* A21dA* 2A3

1S a2 i
]c

]k U
0
DA

]A* A

]z
2 i

]c

]kU
0

A* A
]A

]z
, ~3.38!

which is the final form of the amplitude equation with th
unfolding parameter

m5pr«
25pr

I 02I c

I c
. ~3.39!

The coefficients can be calculated by means of~3.21!, ~3.33!,
and ~3.36!. Since the inhomogeneitiesp j

(a)N depend on the
solutionsYk

(b)M with b,a, a successive evaluation of a
inhomogeneous problems must be performed at the crit
point.
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IV. CONSTANT AMPLITUDE SOLUTIONS
AND THEIR STABILITY

In this section plane wave solutions of the amplitu
equation~3.38! of the form

A~z,t !5R expi @~k2kc!#x1F0], x5z2~vg1u!t
~4.1!

are examined, whereu, R, andF0 are free real parameters
Splitting the complex parameters into real and imagin
parts

b5br1 ibi , c5cr1 ic i , d5dr1 idi , a5ar1 iai
~4.2!

and inserting~4.1! into ~3.38! yields two real algebraic equa
tions that determineR andu ~cf. @20#!. The wave amplitude
can be written as

R252F cr1~k2kc!
]cr

]k U
0

2dr
2ADG

with

D5

S cr1~k2kc!
]cr

]k U
0
D 2

4dr
2

2
«2pr2br~k2kc!

2

dr
. ~4.3!

This wave represents a real solution above of the instab
border of the linear theory«2pr5br(k2kc)

2. Additionally,
there is an existence segment in the («2pr ,k2kc) plane
bounded by the parabolaD50 and the linear instability
curve. We would like to note that these two parabolas
tangent at the point

~k2kc!52
cr

]cr

]k U
0

, «2pr5
brcr

2

S ]cr

]k U
0
D 2 . ~4.4!

There exists a second solution forR2 with a positive sign
in front of the rootAD within this segment. But this secon
solution is unstable as Eckhaus and Iooss have shown@15#.
Hence we investigate the stability properties of the first
lution ~4.3! only. There is a main result concerning its st
bility @15#.

For sufficiently small values of (k2kc) and cr , stable
solutions of the type~4.3! can only exist in a small neigh
borhood of a single curveG in (m,k2kc) space. The curve
G is a branch of a parabola that starts at the critical poin

This phenomenon is denoted as strong pattern selec
i.e., any value of the control parameter yields a unique w
number. In a neon glow discharge, we have observed exp
mentally a small stability band that is asymmetric with r
spect to the substitution (k2kc)→2(k2kc). The observed
transitions show the peculiarities of an Eckhaus instabi
@14#. The same behavior is found in numerical simulations
the full set of balance equations@21#.The width and the form
of the stability band strongly depend on the plasma par
eters, e.g., on the pressurep0. In order to find these bound
y

ty

e

-
-

n,
e
ri-
-

y
f

-

aries of the stability region close toG more precisely, we
perform an analysis without the restriction to small values
k2kc andcr . This analysis is made by means of the var
tional equation corresponding to~3.38!

]dA

]t
5«2prdA1u

]dA

]x
1b

]2dA

]x2
1c~A2dA* 12A* AdA!

1S a2 i
]c

]k U
0
D FA

]

]x
~AdA* 1A* dA!

1dA
]

]x
~A* A!G2 i

]c

]kU
0
FA* A

]

]x
dA1~AdA*

1A* dA!
]

]x
AG1d~2A3A* dA* 13A* 2A2dA!,

wheredA(x,t) represents a small perturbation of the amp
tude. Inserting the basic solution~4.1! for A and taking into
consideration the complex conjugate variational equat
yields a two-component vector differential equation. Th
equation can be simplified by means of a unitary transform
tion Û of the type used in@12# and we find

]SW 1

]t
5S br

]2

]x2
1Fu22bi~k2kc!1R2

]ci

]k U
0
G ]

]xD Î SW 1

1S bi

]2

]x2
1F2br~k2kc!2R2

]cr

]k U
0
G ]

]xD K̂SW 1

12R2S cr12R2dr1~k2kc!
]cr

]k U
0

1Far1
]ci

]k U
0
G ]

]xD M̂SW 1

12R2S ci12R2di1~k2kc!
]ci

]k U
0

1Fai2
]cr

]k U
0
G ]

]xD P̂SW 1 , ~4.5!

where the matrix operators are defined by

Î 5S 1 0

0 1D , K̂5S 0 21

1 0 D , M̂5S 1 0

0 0D , P̂5S 0 0

1 0D ,

and

S dA

dA* D 5ÛSW 1 .

The stability properties ofSW 1 can be studied by means o
the ansatz

SW 1~x,t !5@XW cos~qx!1YW sin~qx!#exp~lt !,
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whereXW ,YW are constant two-dimensional vectors andq is an
arbitrary wave number. Inserting this ansatz into~4.5! we
obtain a fourth-order algebraic equation that can be fac
ized resulting in

l21~a11 ib1!l1~a01 ib0!50. ~4.6!

The real coefficientsa1 ,b1 ,a0 ,b0 can be found in the Ap-
pendix. Note that~4.6! has the same form but different co
efficients as in the case of Ref.@12#. Therefore we can use
the corresponding stability conditions~cf. also@22#!

a1.0, P~q!5a1
2a01~a1b12b0!b0.0 ⇔ stability.

~4.7!

For a discussion of the long wavelength perturbationq
→0, it is reasonable to introduce the rescaling transform
tion

ã05
a0

q2
, b̃05

b0

q
, b̃15

b1

q
, ã15a1 ⇒ P~q!5q2P̃~q!.

~4.8!
re
te
r-

-

Sinceq2>0 one also has the equivalent conditions

a1.0, P̃~q!.0, ~4.9!

which are also applicable in the caseq→0. Of course,~4.7!
can be discussed numerically, if the discharge lengthl is
finite and therefore a lower limit of the wave number of t
perturbation exists. In an infinitely long system the stabil
against arbitrary long wavelength disturbances~i.e., q→0)
can be studied by means of

lim
q→0

a1522R2S cr12R2dr1~k2kc!
]cr

]k U
0
D .0,

lim
q→0

P̃~q!.0. ~4.10!

After elementary substitutions the second condition~4.10!
can be written as
22R2S brFcr12R2dr1~k2kc!
]cr

]k U
0
G1biFci12R2di1~k2kc!

]ci

]k U
0
G D

22R2S 2br~k2kc!2R2
]cr

]k U
0
D F ai2

]cr

]k U
0

2S ar1
]ci

]k U
0
D ci12R2di1~k2kc!

]ci

]k U
0

cr12R2dr1~k2kc!
]cr

]k U
0

G
2S 2br~k2kc!2R2

]cr

]k U
0
D 2S 11

Fci12R2di1~k2kc!
]ci

]k U
0
G2

Fcr12R2dr1~k2kc!
]cr

]k U
0
G2D .0, ~4.11!
-
s-
r

our
tive
whereR2 is defined by~4.3!. Equation~4.11! can be consid-
ered as a functionf (k2kc ,m).0 sinceR2 depends onm
5«2pr and (k2kc). There are two marginal cases, whe
~4.11! reduces to well known results. Without proof we no
that in the limit dr ,di ,ar ,ai ,]cr /]ku0 ,]ci /]ku0→0 the
stable band of the usual CGLE arises~see, e.g.,@23#!. The
second case yields the stability curveG found by Eckhaus
and Iooss@15#. Let the magnitude ofcr andk2kc be suffi-
ciently small by

cr5« c̃r , k2kc5« k̃. ~4.12!

Then by taking into account~4.3!, the amplitude of the wave
is small, too,

R25«R̃2,
where the tilde quantities areO(1). Inserting the assump
tions ~4.12! into ~4.11! and considering the resulting expre
sion as a power series with respect to the small paramete«,
one finds

0,2

ci
2S 2brk̃2R̃2

]cr

]k U
0
D 2

S c̃r12R̃2dr1 k̃
]cr

]k U
0
D 2

1«F22biciR̃
21S 2brk̃2R̃2

]cr

]k U
0
D ~••• !G1O~«2!.

~4.13!

The dots indicate some terms that are not important in
discussion. The first term on the right-hand side is nega
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TABLE I. Dependence of the coefficients of the amplitude equation on the pressurep0.

p0 (Pa) vg br bi cr ci

]cr

]k U
0

]ci

]k U
0

ar ai dr di

160 20.192 0.0917 20.0156 22.220 10.1 26.63 4.90 28.50 3.39 2329.2 22203.2
187 20.139 0.0740 20.0142 20.776 5.11 23.59 2.53 24.64 20.363 2111.1 2744.4
200 20.127 0.070 20.0112 20.593 4.09 22.84 1.88 23.70 20.678 270.6 2491.0
213 20.120 0.0676 20.0079 20.529 3.43 22.32 1.47 23.11 20.759 247.1 2344.8
240 20.115 0.0653 20.0018 20.526 2.64 21.70 1.04 22.47 20.750 223.9 2195.4
267 20.115 0.0646 0.0036 20.559 2.21 21.38 0.849 22.17 20.724 214.1 2126.1
293 20.119 0.0650 0.0084 20.595 1.96 21.20 0.758 22.02 20.716 29.54 289.1
320 20.123 0.0656 0.0128 20.628 1.81 21.09 0.714 21.95 20.724 27.22 267.2
347 20.129 0.0666 0.0170 20.662 1.73 21.04 0.697 21.93 20.743 25.96 253.4
373 20.136 0.0680 0.0211 20.699 1.69 21.01 0.694 21.94 20.770 25.23 244.1
400 20.144 0.0696 0.0252 20.739 1.68 21.00 0.702 21.98 20.803 24.79 237.6
427 20.152 0.0713 0.0294 20.783 1.70 21.01 0.717 22.04 20.841 24.52 232.9
453 20.161 0.0731 0.0338 20.833 1.73 21.02 0.738 22.12 20.884 24.34 229.5
480 20.171 0.0751 0.0383 20.889 1.78 21.04 0.764 22.21 20.931 24.21 227.0
507 20.181 0.0772 0.0431 20.951 1.85 21.07 0.794 22.32 20.984 24.11 225.1
533 20.192 0.0793 0.0481 21.02 1.93 21.11 0.827 22.44 21.04 24.00 223.7
560 20.204 0.0815 0.0534 21.10 2.02 21.14 0.864 22.58 21.10 23.89 222.7
587 20.216 0.0839 0.0591 21.18 2.13 21.19 0.905 22.73 21.17 23.75 222.0
1200 20.723 0.323 20.352 21.56 1.62 22.68 20.225 2.20 21.59 29.11 1.67
or
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and therefore the stability condition can only be fulfilled f
all sufficiently small values of«.0 if this term vanishes,
i.e.,

S 2brk̃2R̃2
]cr

]k U
0
D 50. ~4.14!

Here we have assumedciÞ0. Moreover,~4.13! reduces to

0,«@22biciR̃
2#1O~«2!

i.e., an additional condition arises by

bici,0. ~4.15!

Rescaling~4.14! according to~4.12! one finds

2br~k2kc!2R2
]cr

]k U
0

50. ~4.16!

This equation defines the stability curveG. Using similar
abbreviations as Eckhaus and Iooss@15#

k05cr S ]cr

]k U
0
D 21

,

s5S 1

2

]cr

]k U
0
D 2

1drbr ,k* 52
k0

4s S ]cr

]k U
0
D 2

,

«
*
2 5

brk0
2

4prs S ]cr

]k U
0
D 2

, ~4.17!

we find after simple calculations
G: 4brs@~k2kc!2k* #21pr S ]cr

]k U
0
D 2

~«22«
*
2 !50.

~4.18!

A detailed discussion of the properties of this curve can
found in @15#.

Since we are interested in the boundaries of the stab
band aroundG, a numerical evaluation of~4.11! is possible
in all cases in which the restriction~4.12! fails. We report on
selected results concerning the ionization waves in the n
section.

V. DISCUSSION OF THE STABILITY PROPERTIES
OF IONIZATION WAVES

In order to predict the stability properties of ionizatio
waves in a neon glow discharge we have to solve two pr
lems. In a first step one has to calculate the complex coe
cients of the amplitude equation~3.38!. These coefficients
contain all information on the special plasma system tha
relevant to the wave dynamics in the weak nonlinear regi
The dependence of these coefficients on the plasma pa
eters, e.g.,p0 or r 0, is not easy to discuss because so
intermediate steps, such as the solution of inhomogene
systems, must be performed~cf. Sec. III!. Therefore, these
coefficients were determined numerically by solving the
homogeneous problems discussed in Sec. III for selec
pressure values and a fixed radiusr 051 cm. The results are
shown in Table I. We observe a strong variation of some
the coefficients~e.g., ar , dr , and di! as the pressure in
creases. These coefficients are large in the low-pressur
gion p0,250 Pa. Taking into consideration the amplitu
equation~3.37! found by means of perturbation theory, w
expect that the additional nonlinearities are very importan
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this pressure range. On the other hand, we find thatcr is
small compared to other coefficients~cf. ar ,dr ,di), but it is
not ‘‘very’’ small over the whole pressure region. The esse
tial condition that has to be fulfilled by the coefficients r
quires that the ratiocr /dr is a sufficiently small quantity
@17#. For example, the following modified scaling transfo
mation

br5«b̃r , bi5«b̃i , dr5«21d̃r , di5«21d̃i , cr5« c̃r ,

k2kc5« k̃, pr5« p̃r , ~5.1!

where the wave amplitude scales asR25«2R̃2, can be used
instead of~4.12! here. Inserting~5.1! into ~4.11! and per-
forming a similar treatment as in Sec. IV provides exac
the same results, i.e., the curveG according to~4.14! and the
stability condition ~4.15!. Therefore we expect also th
strong pattern selection property in the case of our partic
coefficients. The second step of our consideration cont
the numerical evaluation of the condition~4.11!. Figure 2
shows the stability region for a pressurep05200 Pa. Re-
member that the unfolding parameterm is proportional to the
current deviations from the critical value@see Eq.~3.39!#.

In contrast to the classical Eckhaus result we find a
bility band of finite length that is asymmetric with respect
the transformation (k2kc)→2(k2kc) and is bent to
smaller wave numbers. This behavior is observed in a
neon discharge and the corresponding transitions betw
the stable and unstable regions, respectively, are identifie
an Eckhaus-type instability@14#. We would like to note that
a similar stability band has been observed already by A
erberg and Michel@13# in experiments, however, they cou
not realize the essential nonlinear nature of this phenome

For all sufficiently small values ofm andk2kc the curve
G lies within the stability band, but fork2kc,20.3 we
observe an increasing deviation. This is not surprising si
the stability curveG is an approximation. An interestin

FIG. 2. Stability band of an infinitely long discharge (p0

5200 Pa,r 051 cm) calculated from condition~4.11! and Table I.
The solid lines indicate the boundaries of the stability region, i
outside of the band thep waves become unstable. The dashed l
marks the theoretical stability curveG defined by~4.18!. k is the
dimensionless wave number and the corresponding critical va
are given bykc54.512,I c51.736 mA, wherepr50.254.
-
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property of the stability region for this pressure value is t
existence of a lower bound with respect to the wave numb
i.e., no stable waves exist fork2kc,20.5. In contrast, the
stability region of the full system of balance equations do
not have this property@21#. The reason for this difference
seems to be that the amplitude equation is an approxima
of the full system near the critical point. The lower boun
with respect to the wave number strongly increases w
pressure. Figure 3 shows the results in the case ofp0
5320 Pa. We did not find a lower limit of the wave numb
for all k2kc.23.0 and, moreover, the curveG lies per-
fectly within the band. But there is still a contradiction to th
theoretical results discussed in Sec. IV: Inspecting the co
sponding coefficients of Table I we findbici.0, i.e., there
must be unstable waves only@cf. ~4.15!#. This example
shows clearly the limits of the analytical estimations of S
IV, especially the restricted applicability of~4.15!. The sta-
bility function ~4.11! is positive, but very small. Therefore
is hard to attack by means of the mentioned type of per
bation theory. Our results in the casebici.0 are confirmed
by numerical simulations of the full set of hydrodynam
balance equations at selected pressure values, which
the same stability properties@21#. Moreover, also the rea
experiment shows stable waves in the same pressure re
@13,24#.

Increasing the pressurep0, one finds a enlargement of th
stability region, which finally yields a loss of the strong pa
tern selection property. Such a situation is presented in Fi
for p051200 Pa. Note that one observes the so-calles
waves@25# at this pressure value near the instability boun
ary. Although the curveG exists in this case (bici,0), it has
no practical meaning because the stability region fills a la
portion of the (m,k2kc) plane. The stability region is simi
lar to that of the cubic order CGLE, which shows that t
higher-order nonlinear terms are not very important for th
plasma parameters. Moreover, the applicability of the deg
erate modulation equation is doubtful in this case. A corr

.,

es

FIG. 3. Stability band of an infinitely long discharge (p0

5320 Pa,r 051 cm) calculated from condition~4.11! and Table I.
The solid lines indicate the boundaries of the stability region, i
outside of the band thep waves become unstable. The dashed l
marks the theoretical stability curveG defined by~4.18!. k is the
dimensionless wave number and the corresponding critical va
are given bykc53.640,I c50.915 mA, wherepr50.191.
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description must include the two additional linear terms
the fourth perturbation order. We have estimated the coe
cient f according to~3.34! and found the ratiou f u/ubu'0.3.
This means that the results of Fig. 4 are correct at least
sufficiently small values of (k2kc). In order to study the
influence of a finite length on the stability properties ofp
waves, we have performed some additional considerati
In a finite column only a discrete set of wave numbersk
5kn52pn/ l (n51,2, . . . ) can berealized. This means tha
due to the strong pattern selection one finds a subset okn
with finite intervals of control parameter values where t
waves are stable. Of course, the width of the intervals
affected by the actual plasma parameters. Whether or no
neighboring intervals overlap strongly depends on the wi
of the stability band and on the realized wave numbers of
system. Moreover, if the discharge has a finite lengthl, a
lower limit of the wave numberq of the perturbation exists
which is given by

qmin52p/ l . ~5.2!

In this case the stability conditions~4.10! and~4.11! are not
applicable since they are based on the limitq→0. Of course,
we can use the general condition~4.7!, where the substitution
q→qmin must be made. Then the polynomialP(qmin) de-
pends on the lengthl and can be studied by means of n
merical methods. The results of two different lengths
represented in Figs. 5 and 6 for a pressurep05200 Pa. Here
we have marked the set of realized stable wave numberkn
52pn/ l by vertical lines. Note that the length of the di
chargeL is connected to the dimensionless lengthl by a
factorE0 /T0 @7#, whereE0 andT0 are the equilibrium values
of the electric field and the electron temperature, resp
tively. The principal shape of the band remains unchange
the lengthl is varied ~cf. also Fig. 2!, but one observes a
minor enlargement of the stability region as the length of
discharge decreases. We expect that this relatively smal
fect cannot be observed in a real neon discharge. On
other hand, the finite length of the stability band atp0

FIG. 4. Stability region~above the solid line! of s waves in an
infinitely long discharge (p051200 Pa,r 051 cm) calculated from
condition~4.11! and Table I. The dashed line marks the theoreti
stability curveG defined by~4.18!. The corresponding critical val
ues are given bykc51.092, I c51.039 mA, andpr50.368.
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5200 Pa restricts the number of observable stablep wave
modes. For example, there are only two stable modes
discharge of lengthL530 cm atp05200 Pa. This number
of stable modes increases as the pressure increases for a
discharge length. Figure 7 shows the corresponding stab
band in the case ofp05320 Pa. This seems to be the typic
situation as observed in real experiments@13,14#. Starting
with a stable wave mode the Eckhaus instability appears
increasing or decreasing the currentI 0, so that the stability
band is left and a transition to the neighboring stable wa
mode occurs. Since there are overlapping stability interv
a hysteresis is observed if the current is varied. This eff
cannot be described by means of the usual cubic order CG
because the resulting stability region is bounded by a
rabola that cannot be left by increasing the control param
~the currentI 0). As a consequence the observed hystere
@14# is an important argument for the necessity of using
amplitude equation of higher order as~3.38!.

l

FIG. 5. Stability band~solid lines! and sets of stable wave num
bers~vertical lines with corresponding mode numbers! of p waves
in a system with lengthL560 cm (p05200 Pa,r 051 cm) calcu-
lated from condition~4.7! and Table I. The critical values are th
same as in Fig. 2.

FIG. 6. Stability band~solid lines! and sets of stable wave num
bers~vertical lines with corresponding mode numbers! of p waves
in a system with lengthL530 cm (p05200 Pa,r 051 cm) calcu-
lated from condition~4.7! and Table I. The critical values are th
same as in Fig. 2.
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Our last example given in Fig. 8 shows the possibility
finding nonoverlapping stability intervals of the control p
rameter~e.g., modesn512 andn513). On the contrary a
p05320 Pa andL530 cm~cf. Fig. 7! one finds one overlap
only. The nonoverlapping is accompanied by unstable w
dynamics if the discharge currentI 0 is choosen in the gap
between the two neighboring stability ranges. In such ca
one observes irregular transitions between two wave mo
in the numerical simulation of the full set of balance equ
tions. A numerical study concerning the pattern selecting
stabilities can be found in@21#.

In our opinion, not all of these details concerning t
stability properties can be found also in real experiments
the same values of the plasma parameters. However,
qualitative description of the wave phenomena by mean
amplitude equations seems to be a good instrument to un
stand most of the nonlinear properties near the bifurca
point. The results of this paper give rise to additional qu
tions on the details of the transition from the stability band
the instability region~cf. Figs. 2–8!. In numerical simula-
tions @21# two types of the Eckhaus instability have be
detected. If one leaves the stability band by reducing
discharge current always the subcritical Eckhaus instab
is observed, where the long wavelength perturbation
creases in time until a space-time dislocation evolves. On

FIG. 7. Stability band~solid lines! and sets of stable wave num
bers~vertical lines with corresponding mode numbers! of p waves
in a system with lengthL530 cm (p05320 Pa,r 051 cm) calcu-
lated from condition~4.7! and Table I. The critical values are th
same as in Fig. 3.
f
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e

upper border of the stability band at certain parameter se
supercritical bifurcation may appear. In this case one
serves a stable long wavelength perturbation, whose am
tude increases proportional to the square root of the cur
increase. Hitherto such bifurcations have been found
Rayleigh-Bénard convection@26# and in hydrothermal waves
@27#. The theoretical analysis can be accomplished star
from Eq. ~1.1! and using the coefficients of Table I. Furth
phenomena, which we plan to investigate, are spatiotemp
intermittency and the propagation of localized solutions@16#.
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APPENDIX A: DEFINITIONS

In this Appendix we list some of our abbreviations a
definitions. We begin with the definition of the nonline
coefficients of the basic equation~2.1!, where only the non-
zero coefficients are given

FIG. 8. Stability band~solid lines! and sets of stable wave num
bers~vertical lines with corresponding mode numbers! of p waves
in a system with lengthL530 cm (p05213 Pa,r 051 cm) calcu-
lated from condition~4.7! and Table I. The corresponding critica
values are given bykc54.326,I c51.553 mA, wherepr50.234.
D jkl :

D1135D1315r1/2, D1225r5 , D1335r2 , D1125D1215r3/2,

D1235D1325r4/2, D2135D2315r6/2, D2335r7 , D2225r10,

D2125D2215r8/2, D2235D2325r9/2, D3135D33152h1/2,

D3125D32152h4/2, D3235D33252h5/2, D4145D44151/2,

D33352h2 ,
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Ejkl :

E1315a, E1135b, E331522d1 , E31352d2 , E33352d2 ,

F jkl :

F1135F1315~a1b!/2, F3135F33152d3/2, F33352d2 ,

Qjkl :

Q4135b, Q4315a.

The cubic order coefficients are given by

Gjklm :

G11235G12315G13125G11325G13215G12135s0/6, G13335s2 ,

G11335G13315G13135s1/3, G12335G13325G13235s3/3,

G12235G12325G13225s4/3, G21335G23315G23135s5/3,

G22335G23325G23235s7/3, G22235G22325G23225s8/3,

G31335G33315G331352h2/3, G23335s6 , G333352h3 ,

G31235G32315G33125G31325G33215G321352h5/6,

G32335G33325G332352h6/3,

H jklm :

H333152d1 , H31335H331352d2/2,

L jklm :

L313352d2 , L33135L333152d3/2.

Next we list the inhomogeneities used in Sec. III. Note that all vector components and the wave number must be eva
the critical pair (kc ,vc)

p j
(3)152k2F jkl~Yk* Yl

(2)21Yk
(2)2Yl* !2k2Ejkl~4Yk* Yl

(2)21Yk
(2)2Yl* 1Yk

(2)0Yl !1 ikQjkl~2Yk* Yl
(2)22Yk

(2)2Yl* 1Yk
(2)0Yl !

1D jkl u0~Yk* Yl
(2)21Yk

(2)2Yl* 1YkYl
(2)01Yk

(2)0Yl !1@Gjklmu02k2H jklm#~YkYlYm* 1Yk* YlYm1YkYl* Ym!

1k2L jklm~YkYlYm* 2Yk* YlYm1YkYl* Ym!,

p j
(4)25D jkl u0~Yk

(2)2Yl
(2)01Yk

(2)0Yl
(2)21YkYl

(3)11Yk
(3)1Yl1Yk

(3)3Yl* 1Yk* Yl
(3)3!2k2Ejkl~4Yk

(2)0Yl
(2)21YkYl

(3)11Yk
(3)1Yl

1Yk
(3)3Yl* 19Yk* Yl

(3)3!2k2F jkl~YkYl
(3)11Yk

(3)1Yl23Yk
(3)3Yl* 23Yk* Yl

(3)3!1 ikQjkl~2Yk
(2)0Yl

(2)21YkYl
(3)11Yk

(3)1Yl

2Yk
(3)3Yl* 13Yk* Yl

(3)3!1Gjklmu0~Yk
(2)0YlYm1YkYl

(2)0Ym1YkYlYm
(2)01YkYl

(2)2Ym* 1YkYl* Ym
(2)21Yk

(2)2YlYm*

1Yk
(2)2Yl* Ym1Yk* Yl

(2)2Ym1Yk* YlYm
(2)2!2k2H jklm~Yk

(2)0YlYm1YkYl
(2)0Ym1YkYl

(2)2Ym* 14YkYl* Ym
(2)21Yk

(2)2YlYm*

1Yk
(2)2Yl* Ym1Yk* Yl

(2)2Ym14Yk* YlYm
(2)2!1k2L jklm~2Yk

(2)0YlYm12YkYl
(2)2Ym* 12YkYl* Ym

(2)21Yk
(2)2YlYm*

1Yk
(2)2Yl* Ym22Yk* Yl

(2)2Ym22Yk* YlYm
(2)2!,

p j
(4)05D jkl u0@Yk

(2)0Yl
(2)01Yk~Yl

(3)1!* 1Yk
(3)1Yl* 1Yk* Yl

(3)11~Yk
(3)1!* Yl1Yk

(2)2~Yl
(2)2!* 1~Yk

(2)2!* Yl
(2)2#1k2~F jkl2Ejkl !

3~Yk~Yl
(3)1!* 1Yk

(3)1Yl* 1Yk* Yl
(3)11~Yk

(3)1!* Yl14Yk
(2)2~Yl

(2)2!* 14~Yk
(2)2!* Yl

(2)2!2 ikQjkl@Yk~Yl
(3)1!* 1Yk

(3)1Yl*

2Yk* Yl
(3)12~Yk

(3)1!* Yl12Yk
(2)2~Yl

(2)2!* 22~Yk
(2)2!* Yl

(2)2#1Gjklmu0@YkYl* Ym
(2)01Yk* YlYm

(2)01Yk* Yl
(2)0Ym
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1YkYl
(2)0Ym* 1Yk

(2)0YlYm* 1Yk
(2)0Yl* Ym1Yk

(2)2Yl* Ym* 1Yk* Yl
(2)2Ym* 1Yk* Yl* Ym

(2)21~Yk
(2)2!* YlYm1Yk~Yl

(2)2!* Ym

1YkYl~Ym
(2)2!* #2k2H jklm@1Yk* Yl

(2)0Ym1YkYl
(2)0Ym* 1Yk

(2)2Yl* Ym* 1Yk* Yl
(2)2Ym* 14Yk* Yl* Ym

(2)21~Yk
(2)2!* YlYm

1Yk~Yl
(2)2!* Ym14YkYl~Ym

(2)2!* 1Yk
(2)0YlYm* 1Yk

(2)0Yl* Ym#1k2L jklm@2Yk* Yl
(2)2Ym* 12Yk* Yl* Ym

(2)22Yk
(2)2Yl* Ym*

2~Yk
(2)2!* YlYm12Yk~Yl

(2)2!* Ym12YkYl~Ym
(2)2!* 1Yk

(2)0YlYm* 1Yk
(2)0Yl* Ym#,

p j
(4)15D jkl u0S YkYl

(3)01Yk
(3)0Yl1 i

]Yk*

]k
Yl

(2)21 iYk
(2)2

]Yl*

]k D 2k2Ejkl S Yk
(3)0Yl14i

]Yk*

]k
Yl

(2)21 iYk
(2)2

]Yl*

]k D 22ikEjklYk
(2)2Yl*

1Qjkl~YkYl
(2)01Yk

(2)2Yl* !1kQjkl S Yk
(2)2

]Yl*

]k
22

]Yk*

]k
Yl

(2)21 iYk
(3)0Yl D 12k2F jkl S i

]Yk*

]k
Yl

(2)21 iYk
(2)2

]Yl*

]k D
1 ikF jkl~YkYl

(2)01Yk
(2)0Yl12Yk

(2)2Yl* 12Yk* Yl
(2)2!1 i ~Gjklmu02k2H jklm!S Yk

]Yl*

]k
Ym1YkYl

]Ym*

]k
1

]Yk*

]k
YlYmD

1 ik2L jklmS Yk

]Yl*

]k
Ym1YkYl

]Ym*

]k
2

]Yk*

]k
YlYmD 1 ikL jklm~YkYl* Ym1YkYlYm* !22ikH jklmYkYlYm* .

Note that a partial derivative with respect tok means the derivative at the critical valuek5kc . The last inhomogeneity is
given by

p j
(5)15D jkl u0@YkYl

(4)01Yk
(4)0Yl1Yk

(3)1Yl
(2)01Yk

(2)0Yl
(3)11Yk

(4)2Yl* 1Yk* Yl
(4)21Yk

(2)2~Yl
(3)1!* 1~Yk

(3)1!* Yl
(2)21Yk

(3)3~Yl
(2)2!*

1~Yk
(2)2!* Yl

(3)3#2k2Ejkl@Yk
(4)0Yl1Yk

(2)0Yl
(3)11Yk

(4)2Yl* 14Yk* Yl
(4)21Yk

(2)2~Yl
(3)1!* 14~Yk

(3)1!* Yl
(2)2

14Yk
(3)3~Yl

(2)2!* 19~Yk
(2)2!* Yl

(3)3#12k2F jkl@Yk
(4)2Yl* 1Yk* Yl

(4)21Yk
(2)2~Yl

(3)1!* 1~Yk
(3)1!* Yl

(2)213Yk
(3)3~Yl

(2)2!*

13~Yk
(2)2!* Yl

(3)3#1 ikQjkl@Yk
(4)0Yl1Yk

(2)0Yl
(3)12Yk

(4)2Yl* 2Yk
(2)2~Yl

(3)1!* 12Yk* Yl
(4)212~Yk

(3)1!* Yl
(2)2

22Yk
(3)3~Yl

(2)2!* 13~Yk
(2)2!* Yl

(3)3#1Gjklmu0@~Yk
(2)2!* YlYm

(2)21~Yk
(2)2!* Yl

(2)2Ym1Yk* Yl
(2)2Ym

(2)01Yk
(2)2Yl* Ym

(2)0

1Yk* Yl
(2)0Ym

(2)21Yk
(2)2Yl

(2)0Ym* 1Yk
(2)2~Yl

(2)2!* Ym1Yk
(2)2Yl~Ym

(2)2!* 1YkYl
(2)2~Ym

(2)2!* 1Yk~Yl
(2)2!* Ym

(2)2

1YkYl
(2)0Ym

(2)01Yk
(2)0YlYm

(2)01Yk
(2)0Yl

(2)0Ym1Yk
(2)0Yl

(2)2Ym* 1Yk
(2)0Yl* Ym

(2)21Yk* Yl* Ym
(3)31Yk

(3)3Yl* Ym* 1Yk* Yl
(3)3Ym*

1~Yk
(3)1!* YlYm1Yk* Yl

(3)1Ym1Yk* YlYm
(3)11Yk

(3)1YlYm* 1YkYl
(3)1Ym* 1YkYl~Ym

(3)1!* 1Yk
(3)1Yl* Ym1Yk~Yl

(3)1!* Ym

1YkYl* Ym
(3)1#2k2H jklm@4~Yk

(2)2!* YlYm
(2)21~Yk

(2)2!* Yl
(2)2Ym14Yk* Yl

(2)0Ym
(2)21Yk

(2)2Yl
(2)0Ym* 1Yk

(2)2~Yl
(2)2!* Ym

14Yk
(2)2Yl~Ym

(2)2!* 14YkYl
(2)2~Ym

(2)2!* 14Yk~Yl
(2)2!* Ym

(2)21Yk
(2)0Yl

(2)0Ym1Yk
(2)0Yl

(2)2Ym* 14Yk
(2)0Yl* Ym

(2)2

19Yk* Yl* Ym
(3)31Yk

(3)3Yl* Ym* 1Yk* Yl
(3)3Ym* 1~Yk

(3)1!* YlYm1Yk* Yl
(3)1Ym1Yk* YlYm

(3)11Yk
(3)1YlYm* 1YkYl

(3)1Ym*

1YkYl~Ym
(3)1!* 1Yk

(3)1Yl* Ym1Yk~Yl
(3)1!* Ym1YkYl* Ym

(3)1#1k2L jklm@2Yk
(2)2~Yl

(2)2!* Ym22~Yk
(2)2!* YlYm

(2)2

12Yk
(2)2Yl~Ym

(2)2!* 22~Yk
(2)2!* Yl

(2)2Ym14YkYl
(2)2~Ym

(2)2!* 14Yk~Yl
(2)2!* Ym

(2)212Yk
(2)0Yl

(2)2Ym* 12Yk
(2)0Yl* Ym

(2)2

13Yk* Yl* Ym
(3)32Yk

(3)3Yl* Ym* 13Yk* Yl
(3)3Ym* 2~Yk

(3)1!* YlYm2Yk* Yl
(3)1Ym2Yk* YlYm

(3)11Yk
(3)1YlYm* 1YkYl

(3)1Ym*

1YkYl~Ym
(3)1!* 1Yk

(3)1Yl* Ym1Yk~Yl
(3)1!* Ym1YkYl* Ym

(3)1#.

Finally we give the coefficients of the quadratic equation~4.6!

a152brq
222R2S cr12R2dr1~k2kc!

]cr

]k U
0
D ,

b1522qS u22bi~k2kc!12R2
]ci

]k U
0

1R2ar D ,



3092 PRE 61B. BRUHN AND B.-P. KOCH
a052q2br S 2brq
212R2Fcr12R2dr1~k2kc!

]cr

]k U
0
G D 2q2bi S 2biq

212R2Fci12R2di1~k2kc!
]ci

]kU
0
G D

2q2S 2br~k2kc!2R2
]cr

]k U
0
D S 2br~k2kc!23R2

]cr

]k U
0

12R2ai D
2q2S u22bi~k2kc!1R2

]ci

]k U
0
D S u22bi~k2kc!13R2

]ci

]k U
0

12R2ar D ,

b05q3bi S 2br~k2kc!23R2
]cr

]k U
0

12R2ai D 2q3br S u22bi~k2kc!13R2
]ci

]k U
0

12R2ar D
1qS 2br~k2kc!2R2

]cr

]k U
0
D S 2q2bi12R2Fci12R2di1~k2kc!

]ci

]k U
0
G D

1qS u22bi~k2kc!1R2
]ci

]k U
0
D S 2q2br12R2Fcr12R2dr1~k2kc!

]cr

]k U
0
G D ,

where the phase velocityu @cf. ~4.1!# can be calculated by means of

u5bi~k2kc!2
]ci

]k U
0

R22R2~ci1diR
2!/~k2kc!.
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